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ABSTRACT /2; ‘

Investigation of the proble?\L eC;énetration of
an external longitudinal electric field into a semibounded
plasma containing an electron beam in the absence of
instabilities in the system. It is shown that the system
of linear equations for the oscillations of this system
can be reduced to an integral equation for the electric
field and that a solution can be obtained for this equation
in the form of a sum of two components. Formulas are obtained
for the distribution of the electric field and of small

perturbations of the beam velocity and density. The field

distribution in the presence of resonance is ascertained.

A great many studies (a detailed bibliography is given, for example, /3 *
in the summary of [Ref. 1]) have been devoted to the interaction of charged
particle beams with a plasma, An analysis of the dispersion equation showed
that the increasing longitudinal waves (Ref. 2-4) are not excited in the case
of a rather slow monoenergetic, low~density electron beam in a system con-

sisting of such a beam and a plasma.




The penetration of an external longitudinal electric field into a semi-
bounded plasma with an electron beam when there are no instabilities in the
system is investigated (the boundary problem for increasing waves was examined
in [Ref. 5]). In a certain sense, this problem represents a generalization
of the second portion of the well-known work by L. D. Landau (Ref. 6) to the
case of a plasma with a beam. On the other hand, when there is no external
electric field this problem can be regarded as a boundary value problem con-
cerning the interaction of a weakly-modulated electron beam with a plasma.

1. Obtaining an Integral Equation. Let the plasma be bounded by a

flat wall which ideally reflects particles impacting upon it, and let the
electron beam with the charge density pg and the velocity vy with respect
to the plasma be propagated perpendicularly to this plane in the depths of
the plasma. It is assumed that there is no thermal scatter of the velocities
in the beam. Let the x axis lie’along the wall in the direction in which

the beam is propagated; let u represent the velocity component along this
axis.

The distribution function f(u, X) must have the property f(u, 0) = f(-u, 0)
at the boundary; we thus employed the distribution function which is integrated
over Vy and V,.

The magnitude of the longitudinal electric field E;, the perturbation of
the density p;, and the velocity v; of the beam are also given at the boundary.

If the deviations from equilibrium are small, then the plasma oscillations

of the system can be described by the linear equations (Ref. 3)
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Here f is the deviation of the distribution function from the Maxwell
distribution function f;,, p - the deviation of the beam charge density
from the equilibrium value pgy, which is assumed to be compensated by the
excess positive charge in the plasma, and v - the deviation of the beam
velocity from the equilibrium value v;. The dependence of all the quantities
on time is assumed in the form exp (-iwt).

The system of equations (1.1) can be reduced to an integral equation
with respect to E(x). Each equation in the system must be formally integrated
beforehand in order to do this.

Thus, we find from the two latter equations of (1.1): 14
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The relationship connecting f and E, which follows from the first equation
of (1.1), is not given here. It fully coincides with the equation given by
L. D. Landau (Ref. 6), and it is only necessary for obtaining the integral

equation. Finally, integration of the second equation of (1.1) vields
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The following relationship [from the first equation of (1.1)] was employed

here:
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Thus, we arrive at the following integral equation:
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We should note that the function K(£) was studied in the work by L. D.
Landau (Ref. 6).
2.

Integral Representation of the Solution. Let us reduce the integral

equation to a form which lends itself to a solution more readily. Thus, the

field E(x) can be conveniently represented as the sum of the two terms
E (z) =Ex + E(a) (2.1)

It can be readily shown that the magnitude of the field for x + = is
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where w_ and w, are the Langmuir plasma frequencies without a beam and an
electron beam, respectively, and € is the dielectric constant of the plasma
with a beam. Let us supplementarily formally define the functions K(£) and

L(£) and the unknown function E°(x) in the region of negative argument values:

K(-)=K@®F, L(E=P=LR, E(—=-F(@ (2.3)

Then the integral equation for E°(x) can be written in the following form:

F@)— { Ke—bEQETF(LE—E @ =+g(£) (2.4)

£(z) = $(2) —Ew + Ex{[L®) + 2K ®)1 & (2.5)

The upper signs here are for the case of x > 0; the lower signs are for /5

the case of x < 0.

Let us solve
plying both sides

tc +

the integral equation (2.4) by the Fourier method. Multi-

of theequation by exp (-ikx) and integrating over x from -«



Ek){—K (k) —ELy+ Ex"Lx = gs—8-& (2.6)

For any value of ¢(x), the symbols ¢(k) and ¢ are determined by the
equations

. .
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It can be readily seen that if ¢(x) is an even function, then its Fourier
component is ¢(k) = ¢, + ¢_p. If ¢(x) is an odd function, then p(k) = ¢ - ¢_p-
Taking the fact that it is odd into account, we can represent equation

(2.6) in the following form
ECU—L—K#®)]—Es*[{ —Ly—K (k)] = gr —g-x (2.8)

In order to solve equation (2.8), we must establish a connection between
the functions of the argument -k and the complex conjugate functions of the
argument k. This is possible if we distinguish between the real and imaginary
parts in E°(x), g(x), L(x) and K(x), and if we examine the transform corres-
ponding to them separately. Then (2.8) can be reduced to a system of two
equations which relate the imaginary parts of certain analytical functions of
k. The real parts of these analytical functions can differ only by the con-
stants. However, if one analyzes the behavior of the functions in the case of
|k| + o, it can be readily shown that the constants equal zero. As a result,

we obtain

L Ex 8k
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Thus, the electric field can be represented in the following form

L §-x 1&&4} (2.10)

’ L4 e
E=Entsmr ]_T—L,—K(k)_i—-L,.—l'(T'b)J

fes



3. Distribution of Electric Field, Small Velocity Perturbations of

the Beam and Its Density. Following the procedure given in (Ref. 2,6), let

us introduce the functions Kj;(k) and K, (k) which are determined by the rela-

tionships
o_\$ . ‘ .. \8 2 (3.1
a®= (T PU.e-1 K@= (%)rUe-1
where (Ref. 2) “
l.@)==7?§§.“l’(:¢g)§g; (B=re ""'%%) (3.2)

Here 8 is the temperature in energy units, m is the electron mass, and
the contour Cj; is shown in the figure.

The function J (B) differs from J+(B) by the fact that the pole is by-
passed from above, and not from below, during integration. Therefore, wé
have

J.B)=J,()+iVRBexp(—Ysf) (.3)

It can be readily seen that K(k) = K;(k) in the case of k > 0 and
K(k) = Kp(k) for k < 0. Similarly to this, let us introduce the function /6
I (k) =Ky - K_k» and also the functions I (k) and H,(k), which are determined

by the following formulas:
. o,
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Here Ei(z) is the integral exponential function.

(3.4)

It can be shown that N(k) = MI;(k) in the case of k > 0 and H(k) = H,(k)
for k < 0.

Taking (3.1) and (3.4) into consideration, we obtained the following from

formula (2.10):
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The complete calculation of the integrals in (3.5) can only be done
numerically. However, we can readily obtain the asymptotic formula providing
the law by which the field E(x) changes for values of x which are large as
compared with the Debye radius a of the plasma without a beam. If we employ
a computational method which is exactly the same as that used in (Ref. 6),

we obtain the expression

E(z)= n{i+-—-——-Q -‘la( ) exp[ (I’;)%]x | -
o PP+ 5D} (o=

Expression (3.7) provides the law for the decrease in the difference

E(x) - E,, which is similar to that given in (Ref. 6). This would be expected,
since there is no thermal velocity scatter in the beam. If E; + 4wif,/w

changes to zero, then the field E(x) strives to zero in the case of x + =



according to an exponential law, which follows from a determination of the
integrals by means of residues,

If we know the law by which the electric field is distributed in the
plasma, we can find the distribution of the beam velocity perturbation and
its density according to formulas (1.2) and (1.3). Let us transform these
expressions into a form which is more advantageous for obtaining asymptotic

formulas

2(2) = sorexp o { E(®)exp (— )z
(3.8)

plz)=—2 p(z) 4 1P o (:—?)?E(E)exp(—me) (& —2)dt
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For example, in the case of large values of x the beam velocity perturba- /7

tion is related to the electric field E(x) by the simple relationship
v(z)=——i¢—E(z) 3.9
e ;

4. Study of Resonance. Let us find the roots of the integrand denomina-

tors in (3.5). The dispersion equation l—Lk—Kz(k)=0 for longitudinal oscilla-
tions (Ref. 2) can be written in the following form
] Ve
= —rerio-n (=) @

Poles with small Im k make a significant contribution to the integral in
(3.6). Therefore, we shall search for the roots of equation (4.1) which lie
close to the essentially singular point k = 0 in the upper half-plane k.
Assuming that |B| > 1, expanding 1/(B -v) in powers of v/B, and employing the
asymptotic form of the function J_(B) in the upper half-plane (Ref. 2) we

finally obtain

1 —ow4 VO, M13@319,V)e (4.2)
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The roots of equation 1 - L_x - K,(k) = 0 are determined by the same
formula (4.2), in which v changes sign, however. One of the roots of

(4.2) lies in the upper half-plane k only when the radicand is negative, i.e.,

Q.5 S
é<:"f§ai;;:EF;T[f (4.3)

Let us find the roots of equation 1 - Iy - K;(k) = 0 which also lie in the

upper half-plane k. This equation has the following form

1~ (e = po 2, B —11 (4.4)

The asymptotic form of J+(B) in the upper half-plane k (which corresponds
to the lower half-plane B) has an exponentially small imaginary term (Ref. 2).
Let us represent the desired root of equation (4.4) in the following form
B=Bult+By/P) (4.5)
where By 1is the real part of the root which determines (4.2), disregarding
the exponentially small term, and B; is the small imaginary addition. We then

have

__ i3 Vi pdexp (—/sBe)
30+ 0, (v + Be) (4.6)
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e

It follows from the formulation of the problem that 9, << @_ and v <« 1.
Let us represent the dielectric constant € in the form e = e, + Ae, where

oS
= — SEEE O -7

As we shall see below, the value of €, will be critical, since in the case
of ¢ > e, the law by which the field changes close to the boundary differs

qualitatively from that in the case of e< ¢ The critical value in (Ref. 6)

x°

was €, = 0. The shift in the critical value ¢

% in the region of negative ¢

*

can be explained in the case under consideration by a frequency decrease for

a moving beam due to the Doppler effect. Let us investigate the cases



Ae > 0 and Ae < 0. TFor Ae > 0 we have

1 _—0wi VIRITR,5 (4.8)
B 3@+ a3

so that in the case of v > 0 and Ae > -¢,, Bp > 0, and then we have the root /8
of the equation (4.4) with Im 8;< 0. 1In the case of v < 0, there is always
at least one such root of equation (4.4). Let Ae < 0. Then in the lower

half-plane of R there is always a root of equation (4.1)

1 —0 W4 VE@IF OV BeT .
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Taking the relationships (4.2)-(4.9) into consideration and confining
ourselves to linear terms in expansion by powers of k, we find that in the
case of Ae < 0 the electric field close to the boundary changes according to

the law

E=E‘{i zrﬁa +°"x
x“p[ (io_‘li_%_‘k] [a’- 3(a-+m-)

In order to abbreviate formula (4.10), let us set vy = 0 and £f; = 0.

(4.10)

We can obtain the behavior of the field close to the boundary in the

case of Ae > 0 in a similar way

,.
= '?{l "'.it%exp[ o g,: :’,ﬁ Voo (_!2:)]} (4.11)
g = X02+0)
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Formula (4.11) was also obtained on the assumption that v; = 0 and f; = O.

The necessity of taking into account the residue in the pole when de-
termining the integral from zero to infinity, leading to expression (4.11),
can be explained by the fact that the initial integration contour must be de-
formed when determining the asymptotic form of this integral by the method

of descent, so that it coincides with the line of the level passing through

10



saddle point. In the case of this deformation, the pole is bypassed in the
right half of the upper half-plane, if it is located below the level line
and above the abscissa axis.

It must be assumed that Ae is small in formula (4.11), but y must there-
fore be large, so that the field is slowly damped with an increase in x. In the
opposite case, this component can be disregarded, and the field is determined
by (3.7).

In the absence of a beam, formulas (4.10) and (4.11), which describe the
resonance case, are inapplicable. If quadratic terms are taken into account in the
expansion in powers of k, then the passage to the limit to the case where
there is no beam gives the relationships obtained in (Ref. 6).

In thecase of x = 0, formulas (4.10) and (4.11) do not provide the correct
boundary value of El due to the fact that terms on the order of IAE| were
disregarded in the computations. However, with an increase in x,in both
cases the field undergoes oscillations around the value of El/s, to which it
strives at infinity.

The authors would like to thank M. L. Levin for his wvaluable discussions.
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